Geological Engineering exams

TOTAL EXAMINATION PROGRAM

PEO Syllabus of Examinations, 2018 Edition

GEOLOGICAL ENGINEERING

 

PROFESSIONAL EXAMS – SPECIFIC TO GEOLOGICAL ENGINEERING

GROUP A

18-Geol-A1   Mineralogy and Petrology

Introduction to crystallography and crystal chemistry. Physical and chemical properties of minerals in hand specimens. Identification of minerals and rocks with the petrographic microscope. Field and laboratory classification of igneous and metamorphic rocks. The nature of magmas and processes of magmatic differentiation. Metamorphic facies concepts. Interpretation of mineral assemblages of igneous and metamorphic rocks in the light of the phase rule and phase relations of relevant mineral assemblages. Textural and physical properties of rocks relevant to engineering problems.

 18-Geol-A2   Hydrogeology

 Hydrologic cycle: precipitation, evaporation, transpiration, deep and shallow groundwater circulation. Physics of flow through porous media. Hydraulic conductivity and groundwater storage. Occurrence, transmissivity and storage characteristics of surficial and bedrock aquifers. Groundwater exploration methods: geophysics, remote sensing, mapping, borehole investigations. Groundwater flow patterns: recharge, discharge, flow net construction and analysis. Aquifer development and management. Control of pore pressures and groundwater flow in geotechnical engineering.

18-Geol-A3   Sedimentation and Stratigraphy

Classification of sedimentary rocks, processes of weathering, erosion, sedimentation and diagenesis. Formation of carbonate, clastic and chemical precipitate rocks. Principles of stratigraphic and paleontological correlation; sedimentary facies: geological and practical significance. Distribution of major Precambrian  and Phanerozoic systems. Facies associations; modern and ancient sedimentary

environments. The engineering properties and behaviour of sedimentary rocks and the use of stratigraphic principles in the solution of engineering problems.

 18-Geol-A4    Structural Geology

 Stress and strain. Brittle and ductile rock deformation behaviour. Fabric analysis of deformed rocks. Structural features of stable and mobile parts of the crust. Fold and fault development. Mountain building and orogenies. Theories in geotectonics. Methods of structural analysis. Field mapping and graphical data processing; maps, cross-sections, block diagrams, structure contour maps, stereographic projections, equal area nets, and strain indicators. Kinematic and dynamic interpretation. The application of structural geology to the solution of engineering problems.

 18-Geol-A5    Rock Mechanics

Engineering properties and classification of intact rocks. Rock mass properties and classification. Laboratory and in-situ testing of rock. In-situ stresses and stress measurement techniques. Stability analysis of rock slopes and excavations. Rock excavation techniques. Design of excavations, slopes, tunnels and shafts. Rock reinforcement and support. Groundwater considerations in rock engineering.

18-Geol-A6   Soil Mechanics

Rock weathering and development of soils. Engineering classification of soils. Soil physical properties: porosity, density, capillarity, permeability. Shear strength, consolidation and settlement. Normally and over consolidated soils. In-situ stresses in soil masses. Lateral earth pressures. Mechanics, stability and analysis of soil slopes. Pore water pressure, seepage pressure, groundwater considerations in soil engineering.

18-Geol-A7   Applied Geophysics

Basic principles, interpretation, and limitations of geophysical methods applied to the exploration for coal, oil and natural gas, minerals, groundwater, and for geotechnical studies of the surface and subsurface. Introduction to electrical, electromagnetic, and magnetotelluric surveys; magnetic and gravity surveys; seismic reflection and refraction surveys; radiometric methods. Introduction to geophysical well logging techniques. Case histories of applications to engineering problems.

 

GROUP B

18-Geol-B1  Contaminant Hydrogeology 

Groundwater geochemistry, isotopes in groundwater. Movement of dissolved species. Diffusion and dispersion regimes. Classification of contaminants. Organic contaminants, introduction to multiphase flow, LNAPLs and DNAPLs. Assessment, control and remediation of contaminants. Waste management. Deep well disposal.

18-Geol-B2  Terrain Analysis

Elements of photogrammetry. Interpretation of aerial photos – recognition elements (tone, pattern, texture, size and shape, occupance). Identification of structures and terrain features. Glacial, fluvial, coastal, and permafrost landforms – identification and engineering characteristics. LANDSAT imagery. Operation, characteristics, and uses of thermal infrared and RADAR remote sensing.

 18-Geol-B3  Site Investigation

Uses and sources of geological and geotechnical information. Methods of site investigation: trial pits, boreholes, sampling, laboratory and in-situ testing, geophysical methods. In-situ instrumentation and post construction monitoring: measurement of stress, deformation and settlement, pore pressures, permeability, groundwater contamination. Design of site investigations and monitoring schemes.

 18-Geol-B4  Geomorphology and Pleistocene Geology

Basic geomorphological concepts: formation and composition of landforms, geomorphologic cycles. Weathering and soils. Mass wasting. Fluvial processes and landforms. Coastal processes and landforms. Glacial geomorphology and landforms. Frozen-ground phenomena. Karst geomorphology. Physical geology of Canada. Quaternary geology of selected areas of Canada. Influence of geomorphology on human activity.

18-Geol-B5    Environmental Geology

Geological hazards, volcanoes, landslides, earthquakes, subsidence, floods, erosion. Preparation of hazard maps. Return period concepts and risk assessment. Environmental considerations for landfills, deep cavern and deep well disposal of wastes. Mining reclamation. Acid rock drainage. Control of sediment and dissolved contaminants. Preservation and restoration of soils, landscaping and contour restoration, revegetation and erosion control. Preparation of environmental impact statements. Laws and procedures pertaining to environmental assessments.

18-Geol-B6  Resource Geology   

Select ONE from:

  • 18-Geol-B6-1 Petroleum Deposits

Physical properties, geochemistry, origin, migration, accumulation, and history of oil and natural gas, and their associated waters. Geological conditions of oil and gas entrapment. Structural and stratigraphic factors controlling the distribution of reservoir rocks, porosity, permeability and fluid saturations. Environmental problems associated with the development of hydrocarbons.

  • 18-Geol-B6-2 Coal Deposits

Coal depositional environments and their significance. Nature, origin, diagenesis, metamorphism, and classification of organic sediments. Rank, physical, and petrological properties of coal. Glacial and tectonic deformation effects on rank and seam dimensions. Trace element geochemistry of coal. Stratigraphic and geographic occurrence of Canadian (and world) coals. Properties of environmental and mining significance.

  • 18-Geol-B6-3 Metallic and Industrial Mineral Deposits

Nature, mode of occurrence and processes of formation of metallic and industrial minerals including minerals deposited from magmas, high-temperature vapours and aqueous solutions; formed by evaporation orprecipitationin surface waters; formed by mechanical accumulationor accumulated by residual weathering. Processes of element/mineral migration and concentration. Stratigraphic and structural controls on occurrence. Solution geochemistry and isotopic characteristics of ore bearing fluids and ore deposits. Illustrative case histories for important deposits of sulphides, oxides, native elements, silicates, and ionic salts.

18-Geol-B7   Petroleum Development

Drilling equipment, controls and techniques. Circulation systems and well completions. Drilling problems associated with overpressure, underpressure, permafrost, evaporites, sour-gas, loss of circulation. Reservoir fluid phase behaviour. Material balance equations. Porosity and permeability characteristics of reservoirs. Steady and transient flow of oil, water and gas through porous media. Well stimulation. Capillary pressure and multiphase flow. Segregated and diffuse flow regimes. Oil and gas well testing and analysis. Natural drive mechanisms. Secondary and tertiary oil recovery. Introduction to history matching and numerical simulators. Conventional and geostatistical methods of oil and gas reserve estimation.

18-Geol-B8   Resource Economics & Valuation 

Growth of mining and petroleum industries. Estimation of future demands. Significance of the resource sector in the Canadian economy. Prices, exchanges and futures markets. Types and grades of concentrates, smelter charges and returns. Properties, specifications and markets for industrial rocks and minerals. Relative value of hydrocarbon fractions.Evaluation of mining and oil prospects; mining and oil law, taxes and tariffs, labour, transportation, technical factors, property acquisition and claims, development methods, production estimates. Evaluation of geological engineering and commercial aspects of developed properties. Feasibility reports. Costs: access; transportation; mining; milling; well- development, well stimulation; primary, secondary and tertiary recovery. Capital costs, amortization and depreciation, rate-of-return on investment calculations.

18-Geol-B9   Exploration & Mining Geology

Planning and execution of exploration programs. Sampling methods. Legal aspects of exploration in Canada. Principles of geochemistry in mineral exploration. Field analytical techniques. Primary and secondary dispersion patterns, weathering, soil formation. Anomalies in residual and transported overburden, stream waters, stream sediments, vegetation. Factors affecting relative mobility of elements. Background values, threshold values, orientation surveys. Application, planning and interpretation of geophysical surveys. Planning surface drilling programs. Logging, sampling, analysis and interpretation of drill core data. Mineralogical study of ore and recommendations for beneficiation. Introduction to mining methods, equipment selection, layout, environmental logistics during life of mine and at closure, and integration of these with a clear understanding of their compatibility with the geological and geotechnical parameters of the site materials. Mapping and sampling underground. Planning subsurface drilling programs. Structural interpretation and analysis of underground drilling. Quality control aspects of mining and milling. Conventional and geostatistical methods of ore-deposit reserve estimation.

18-Geol-B10 Geophysical Exploration Methods 

Select ONE from:

  • 18-Geol-B10-1  Gravity and Magnetic Fields

Theory and quantitative interpretation of the gravity and magnetic fields in geophysical exploration. Interpretation of regional gravity and magnetic maps. Identification of local anomalies. Data acquisition and data reduction for gravimeters and magnetometers. Design and conduct of field surveys. Potential field, Fourier, forward modeling and inversion methods in data interpretation and analysis.

  • 18-Geol-B10-2  Electrical Methods 

Theory and quantitative interpretation of electrical, electromagnetic and magnetotelluric data in geophysical exploration. Electrical properties of rocks. Self-potential, induced polarization, electromagnetic induction and magnetotelluric methods. Operation of field instrumentation, data reduction. Design and conduct of field surveys. Potential field, forward modeling and inversion methods for data interpretation.

  • 18-Geol-B10-3  Exploration Seismology 

Theory of elasticity and elastic properties of rock. Wave propagation in elastic media. Interaction of waves with boundaries. Body-wave seismology. Surface waves. Earthquake source studies. Artificial energy sources. Refraction and reflection methods. Theory of operation and selection of seismometers. Design and conduct of field refraction and reflection surveys. Fundamentals of digital processing: static corrections, velocity analysis and corrections, Fourier analysis and filtering, stacking, migration. Interpretation of refraction and reflection seismograms.

 

COMPLEMENTARY STUDIES

11-CS-1  Engineering Economics

Basic concepts of engineering economics through understanding of the theoretical and conceptual financial project analysis. Types and applications of engineering economic decisions. Capital, cash flow, and the time value of money concepts. Nominal and effective interest rates when considering loans, mortgages, and bonds. The application of present worth analysis, annual equivalent analysis and rate of return analysis in evaluating independent projects, comparing mutually exclusive projects, analyzing lease vs. buy alternatives and making decisions. After-tax financial analysis requiring an understanding of capital cost allowance (depreciation) and corporate income tax. Understanding methods of financing and capital budgeting. Break-even, sensitivity and risk analyses.

11-CS-2  Engineering in Society – Health and Safety

The duties and legal responsibilities for which engineers are accountable; safety laws and regulations; and a basic knowledge of potential hazards and their control: biological hazards – bacteria, viruses; chemical hazards - gases, liquids and dusts; fire and explosion hazards; physical hazards – noise, radiation, temperature extremes; safety hazards – equipment operation; workplace conditions - equity standards, human behaviour, capabilities, and limitations; managing safety and health through risk management, safety analyses, and safety plans and programs; practices and procedures to improve safety. The roles and social responsibilities of an engineer from a professional ethics point of view, as applied in the context of Canadian values. The integration of ethics into engineering practice, and its effect on public safety and trust.

11-CS-3   Sustainability, Engineering and the Environment

Basic knowledge of soil, water and air quality engineering: soil and water interaction, water supply issues, human activities and their interaction on soil, air and water resources. Fundamentals of: soil erosion, water quality, atmospheric pollution (carbon and nitrogen cycle), climate change, risk assessment. Basic knowledge of renewable energy sources: solar, photovoltaic, wireless electricity, thermal, wind, geothermal, and biofuels. Introduction to renewable materials engineering; nano materials, new material cycles. Eco-product development, and product life cycle assessment; recycling technologies; reuse of products; design for disassembly, recycling, e-waste, and reverse manufacturing. Consumption patterns; transportation; environmental communication; consumer awareness. Optimized energy and resources management. Sustainable methods: sustainability indicators; life cycle assessment; regulatory aspects of environmental management, ecological planning. 

11-CS-4  Engineering Management 

Introduction to management principles and their impact upon social and economic aspects of engineering practice. Engineering management knowledge topics including: market research, assessment and forecasting; strategic planning; risk and change management; product, service and process development; engineering projects and process management;  financial resource management;  marketing, sales and communications management; leadership and organizational management; professional responsibility. New paradigms and innovative business models, including: sustainable production, products, service systems and consumption; best practices and practical examples of successful implementations of sustainable scientific and engineering solutions.